일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- aggs
- Java
- 파이썬
- analyzer test
- aggregation
- token filter test
- query
- 차트
- springboot
- zip 암호화
- API
- Python
- Elasticsearch
- MySQL
- Test
- licence delete curl
- plugin
- matplotlib
- high level client
- flask
- License
- ELASTIC
- 900gle
- TensorFlow
- docker
- Mac
- license delete
- zip 파일 암호화
- sort
- Kafka
Archives
- Today
- Total
개발잡부
[python] elasticsearch 리소스 확인 본문
반응형
# data = client.cat.shards('hyper-item')
data = client.nodes.stats()
print(data)
# es.cat.indices(h='index', s='index').split()
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
import numpy as np
import matplotlib.pyplot as plt
import pprint as ppr
import json
import time
import threading
def nodes_stats():
data = client.nodes.stats()
return [data['nodes']['sZyeNvOxTAGDXfPMxA_l4g']['os']['mem']['used_percent'], data['nodes']['sZyeNvOxTAGDXfPMxA_l4g']['jvm']['mem']['heap_used_percent']]
if __name__ == '__main__':
client = Elasticsearch(hosts='localhost', port='9200', http_auth=('elastic', 'dlengus'))
SIZE = 5
used_percents=[]
heap_used_percents=[]
for i in range(SIZE):
used_percent, heap_used_percent = nodes_stats()
used_percents.append(used_percent)
heap_used_percents.append(heap_used_percent)
t= range(0, SIZE)
y1= used_percents
y2= heap_used_percents
plt.rcParams['font.family'] = 'AppleGothic'
fig, ax = plt.subplots()
ax.set_title('used_percent VS heap_used_percent')
line1, = ax.plot(t, y1, lw=2, label='used_percent')
line2, = ax.plot(t, y2, lw=2, label='heap_used_percent')
leg = ax.legend(fancybox=True, shadow=True)
ax.set_ylabel('query 속도(ms)')
ax.set_xlabel('조회수(회)')
lines = [line1, line2]
lined = {} # Will map legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
lined[legline] = origline
def on_pick(event):
legline = event.artist
origline = lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
legline.set_alpha(1.0 if visible else 0.2)
fig.canvas.draw()
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
반응형
'Python' 카테고리의 다른 글
[python] .csv파일 읽어서 sql 문 만들기 (0) | 2023.04.11 |
---|---|
[python] byte convert size format (0) | 2022.11.17 |
[python] replace( ) (0) | 2022.10.09 |
[python] float check (2) | 2022.10.06 |
[python] random number (0) | 2022.07.03 |
Comments