일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- sort
- token filter test
- Test
- API
- springboot
- aggs
- License
- TensorFlow
- MySQL
- 파이썬
- Elasticsearch
- Java
- ELASTIC
- 900gle
- matplotlib
- license delete
- Kafka
- docker
- analyzer test
- plugin
- Python
- aggregation
- query
- zip 파일 암호화
- Mac
- 차트
- zip 암호화
- licence delete curl
- high level client
- flask
- Today
- Total
목록강좌 (6)
개발잡부
import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() #32x32x3 #Norma train_images, test_images = train_images/255.0, test_images/255.0 class_names = ['airplane','automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] plt.figure(fig..
!pip install -q -U tensorflow !pip install -q tensorflow_datasets import numpy as np import tensorflow_datasets as tfds import tensorflow as tf tfds.disable_progress_bar() import matplotlib.pyplot as plt def plot_graphs(history, metric): plt.plot(history.history[metric]) plt.plot(history.history['val_'+metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_'+ metric]) data..
import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() #32x32x3 #Norma train_images, test_images = train_images/255.0, test_images/255.0 이미지 확인 class_names = ['airplane','automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] plt.fig..
import numpy as np import matplotlib.pyplot as plt import random param1 = random.randint(1,5) #기울기 param2 = random.randint(20,40) #편향 data = [[3,24], [6,48], [9,40], [12, 52]] x = np.array([i[0] for i in data]) y = np.array([i[1] for i in data]) plt.plot(x,y,"b.") def model(x): y = param1 * x + param2 return y def rmse(predict, true): return np.sqrt(((predict - true) ** 2).mean()) predict = [] f..
local에서 테스트 할려고 하니까 안되네.. google colab 에서 해야함.. import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle bo..