일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- MySQL
- Java
- 900gle
- licence delete curl
- zip 파일 암호화
- API
- aggregation
- docker
- 파이썬
- Kafka
- matplotlib
- License
- springboot
- 차트
- flask
- Mac
- high level client
- aggs
- token filter test
- analyzer test
- query
- Test
- Elasticsearch
- zip 암호화
- license delete
- TensorFlow
- ELASTIC
- plugin
- Python
- sort
Archives
- Today
- Total
개발잡부
[es] aggregation test 3 본문
반응형
import json
import time
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
from ssl import create_default_context
import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
import numpy as np
plt.rcParams['font.family'] = 'AppleGothic'
##### SEARCHING #####
def handle_query():
embedding_start = time.time()
embedding_time = time.time() - embedding_start
script_query = {
"match_all": {}
}
aggregations_a = {
"MALL_TYPE": {
"terms": {
"field": "mallType",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": "false",
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
}
},
"BENEFIT": {
"terms": {
"field": "benefit",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": "false",
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
}
},
"GRADE": {
"range": {
"field": "grade",
"ranges": [
{
"to": 1
},
{
"from": 1,
"to": 2
},
{
"from": 2,
"to": 3
},
{
"from": 3,
"to": 4
},
{
"from": 4,
"to": 5
},
{
"from": 5
}
],
"keyed": "false"
}
}
}
aggregations_n = {
"MALL_TYPE": {
"terms": {
"field": "mallType",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": "false",
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
}
},
"BENEFIT": {
"terms": {
"field": "benefit",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": "false",
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
}
},
"GRADE": {
"range": {
"field": "grade",
"ranges": [
{
"to": 1
},
{
"from": 1,
"to": 2
},
{
"from": 2,
"to": 3
},
{
"from": 3,
"to": 4
},
{
"from": 4,
"to": 5
},
{
"from": 5
}
],
"keyed": "false"
}
}
}
data_a = []
data_n = []
i = 0
while i < LIMIT:
search_start_a = time.time()
response_a = client.search(
index=ARRAY_INDEX_NAME,
body={
"size": SEARCH_SIZE,
"query": script_query,
"aggregations": aggregations_a
}
)
search_time_a = time.time() - search_start_a
data_a.append(round(search_time_a * 1000, 2))
i = i + 1
k = 0
while k < LIMIT:
search_start_n = time.time()
response_n = client.search(
index=NESTED_INDEX_NAME,
body={
"size": SEARCH_SIZE,
"query": script_query,
"aggregations": aggregations_n
}
)
search_time_n = time.time() - search_start_n
data_n.append(round(search_time_n * 1000, 2))
k = k + 1
print()
print("{} total hits.".format(response_a["hits"]["total"]["value"]))
print("{} total hits.".format(response_n["hits"]["total"]["value"]))
print("search time_a: {:.2f} ms".format(search_time_a * 1000))
print("search time_n: {:.2f} ms".format(search_time_n * 1000))
print (data_a)
print (data_n)
xdata = range(LIMIT)
# create some y data points
ydata1 = data_a
ydata2 = data_n
# plot the data
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:orange')
ax.set_ylabel('query 속도(ms)')
ax.set_xlabel('반복횟수(회)')
# create the events marking the x data points
xevents1 = EventCollection(xdata, color='tab:blue', linelength=0.05)
xevents2 = EventCollection(xdata, color='tab:orange', linelength=0.05)
# create the events marking the y data points
yevents1 = EventCollection(ydata1, color='tab:blue', linelength=0.05,
orientation='vertical')
yevents2 = EventCollection(ydata2, color='tab:orange', linelength=0.05,
orientation='vertical')
# add the events to the axis
ax.add_collection(xevents1)
ax.add_collection(xevents2)
ax.add_collection(yevents1)
ax.add_collection(yevents2)
# set the limits
ax.set_xlim([0, len(xdata)])
ax.set_ylim([0, 100])
ax.set_title('array aggs vs nested aggs')
# display the plot
plt.show()
##### MAIN SCRIPT #####
if __name__ == '__main__':
ARRAY_INDEX_NAME = "aggs_nested"
NESTED_INDEX_NAME = "aggs_array"
SEARCH_SIZE = 0
LIMIT = 100
client = Elasticsearch("https://elastic:dlengus@돔에인:폿드/", ca_certs=False,
verify_certs=False)
print("start")
handle_query()
반응형
'ElasticStack > Elasticsearch' 카테고리의 다른 글
[es] aggregation test 4 (0) | 2022.07.20 |
---|---|
[es] _update_by_query (0) | 2022.07.20 |
[es] aggregation test 2 (0) | 2022.07.17 |
[es] nested aggregation (0) | 2022.07.16 |
[es] aggregation test 1 (0) | 2022.07.16 |
Comments