일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- flask
- high level client
- MySQL
- License
- 파이썬
- Java
- licence delete curl
- Elasticsearch
- Test
- API
- aggregation
- Python
- Mac
- 900gle
- zip 파일 암호화
- matplotlib
- docker
- 차트
- TensorFlow
- token filter test
- springboot
- analyzer test
- plugin
- license delete
- sort
- Kafka
- aggs
- zip 암호화
- ELASTIC
- query
Archives
- Today
- Total
개발잡부
[tf] 유사성 측정 본문
반응형
import tensorflow as tf
import tensorflow_text as text
hypotheses = tf.ragged.constant([['captain', 'of', 'the', 'delta', 'flight'],
['the', '1990', 'transcript']])
references = tf.ragged.constant([['delta', 'air', 'lines', 'flight'],
['this', 'concludes', 'the', 'transcript']])
result = text.metrics.rouge_l(hypotheses, references)
print('F-Measure: %s' % result.f_measure)
print('P-Measure: %s' % result.p_measure)
print('R-Measure: %s' % result.r_measure)
# Compute ROUGE-L with alpha=0
result = text.metrics.rouge_l(hypotheses, references, alpha=0)
print('F-Measure (alpha=0): %s' % result.f_measure)
print('P-Measure (alpha=0): %s' % result.p_measure)
print('R-Measure (alpha=0): %s' % result.r_measure)
# Compute ROUGE-L with alpha=1
result = text.metrics.rouge_l(hypotheses, references, alpha=1)
print('F-Measure (alpha=1): %s' % result.f_measure)
print('P-Measure (alpha=1): %s' % result.p_measure)
print('R-Measure (alpha=1): %s' % result.r_measure)

반응형
'Python > RNN' 카테고리의 다른 글
[tf] RNN을 사용한 텍스트 분류 (0) | 2022.08.17 |
---|---|
[tf] rnn project (1) | 2022.07.10 |
RNN (0) | 2022.01.09 |