일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- matplotlib
- analyzer test
- aggs
- license delete
- flask
- query
- 차트
- 900gle
- 파이썬
- plugin
- token filter test
- ELASTIC
- zip 암호화
- springboot
- zip 파일 암호화
- Kafka
- high level client
- TensorFlow
- Python
- Test
- MySQL
- licence delete curl
- sort
- Elasticsearch
- Java
- API
- docker
- aggregation
- License
- Mac
Archives
- Today
- Total
개발잡부
[es]성능체크 본문
반응형
카테고리를 파이썬으로보내야 하나..
애매하네
시간이 없어 급하게 작업하다 보니 문제가 생김
ecs 가 재실행하면서 노드의 키값이 바뀌다 보니... 죽을때 마다 매번 노가다를
import json
import time
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
from ssl import create_default_context
import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
import numpy as np
from hurry.filesize import size
import threading
import time
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
plt.rcParams['font.family'] = 'AppleGothic'
def indices_cat():
data = client.nodes.stats()
return data
if __name__ == '__main__':
client = Elasticsearch("https://elastic:{암오}@{URL}:443/", ca_certs=False,
verify_certs=False)
Y_LABEL = "사용률(%)"
X_LABEL = "회/s"
#반복
RANGE = 600
#Y 축
Y_LIMIT = 100
print("------------------------------ start ------------------------------")
os_mem_coodinate_95_used_percent = []
os_cpu_coodinate_95_percent = []
jvm_mem_coodinate_95_heap_used_percent = []
# Mdh0AU5LT46D8C3XSEY5wQ
os_mem_coodinate_22151_used_percent = []
os_cpu_coodinate_22151_percent = []
jvm_mem_coodinate_22151_heap_used_percent = []
# ZFgpRG-cSwyuLOOEKCeALg
os_mem_coodinate_105_used_percent = []
os_cpu_coodinate_105_percent = []
jvm_mem_coodinate_105_heap_used_percent = []
# RmunxwPLQvqn4fQpShLtGQ
os_mem_coodinate_121_used_percent = []
os_cpu_coodinate_121_percent = []
jvm_mem_coodinate_121_heap_used_percent = []
# Vo7OJccYSBizopcrlGj7MQ
os_mem_master_111_used_percent = []
os_cpu_master_111_percent = []
jvm_mem_master_111_heap_used_percent = []
# pJJTt3JFS2q-w1iSiuWDpA
os_mem_coodinate_120_used_percent = []
os_cpu_coodinate_120_percent = []
jvm_mem_coodinate_120_heap_used_percent = []
# Braze
os_mem_coodinate_112_used_percent = []
os_cpu_coodinate_112_percent = []
jvm_mem_coodinate_112_heap_used_percent = []
# eUUFNyGzTD2H8MOXASwI8w
os_mem_data_106_used_percent = []
os_cpu_data_106_percent = []
jvm_mem_data_106_heap_used_percent = []
# HZ8YO6AwSQifVzrCnvGhYA
os_mem_data_123_used_percent = []
os_cpu_data_123_percent = []
jvm_mem_data_123_heap_used_percent = []
# E4rJ_JeDR2u6i3MSzjNe5Q
os_mem_coodinate_151_used_percent = []
os_cpu_coodinate_151_percent = []
jvm_mem_coodinate_151_heap_used_percent = []
# AVDPaek-RfafVm11rI0liQ
os_mem_data_125_used_percent = []
os_cpu_data_125_percent = []
jvm_mem_data_125_heap_used_percent = []
for i in range(0, RANGE):
try:
print(i)
time.sleep(1)
response = indices_cat()
coodinate_95 = response['nodes']['I0WmrPiWS4-PH863oSJ_sg'] #
coodinate_22151 = response['nodes']['8gn7KDTDQRGDW6RSArwPpw'] #braze
coodinate_105 = response['nodes']['Mdh0AU5LT46D8C3XSEY5wQ']
coodinate_121 = response['nodes']['pJJTt3JFS2q-w1iSiuWDpA'] #
master_111 = response['nodes']['Vo7OJccYSBizopcrlGj7MQ'] #
coodinate_120 = response['nodes']['RmunxwPLQvqn4fQpShLtGQ'] #
coodinate_112 = response['nodes']['rqY3qvGvRGS2nVg_eygJAQ'] #
data_106 = response['nodes']['HZ8YO6AwSQifVzrCnvGhYA'] #
data_123 = response['nodes']['eUUFNyGzTD2H8MOXASwI8w'] #
coodinate_151 = response['nodes']['PYLJNXjHQhyuES7NxF9_wA']
data_125 = response['nodes']['AVDPaek-RfafVm11rI0liQ'] #
os_mem_coodinate_95_used_percent.append(coodinate_95['os']['mem']['used_percent'])
os_cpu_coodinate_95_percent.append(coodinate_95['os']['cpu']['percent'])
jvm_mem_coodinate_95_heap_used_percent.append(coodinate_95['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_22151_used_percent.append(coodinate_22151['os']['mem']['used_percent'])
os_cpu_coodinate_22151_percent.append(coodinate_22151['os']['cpu']['percent'])
jvm_mem_coodinate_22151_heap_used_percent.append(coodinate_22151['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_105_used_percent.append(coodinate_105['os']['mem']['used_percent'])
os_cpu_coodinate_105_percent.append(coodinate_105['os']['cpu']['percent'])
jvm_mem_coodinate_105_heap_used_percent.append(coodinate_105['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_121_used_percent.append(coodinate_121['os']['mem']['used_percent'])
os_cpu_coodinate_121_percent.append(coodinate_121['os']['cpu']['percent'])
jvm_mem_coodinate_121_heap_used_percent.append(coodinate_121['jvm']['mem']['heap_used_percent'])
os_mem_master_111_used_percent.append(master_111['os']['mem']['used_percent'])
os_cpu_master_111_percent.append(master_111['os']['cpu']['percent'])
jvm_mem_master_111_heap_used_percent.append(master_111['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_120_used_percent.append(coodinate_120['os']['mem']['used_percent'])
os_cpu_coodinate_120_percent.append(coodinate_120['os']['cpu']['percent'])
jvm_mem_coodinate_120_heap_used_percent.append(coodinate_120['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_112_used_percent.append(coodinate_112['os']['mem']['used_percent'])
os_cpu_coodinate_112_percent.append(coodinate_112['os']['cpu']['percent'])
jvm_mem_coodinate_112_heap_used_percent.append(coodinate_112['jvm']['mem']['heap_used_percent'])
os_mem_data_106_used_percent.append(data_106['os']['mem']['used_percent'])
os_cpu_data_106_percent.append(data_106['os']['cpu']['percent'])
jvm_mem_data_106_heap_used_percent.append(data_106['jvm']['mem']['heap_used_percent'])
os_mem_data_123_used_percent.append(data_123['os']['mem']['used_percent'])
os_cpu_data_123_percent.append(data_123['os']['cpu']['percent'])
jvm_mem_data_123_heap_used_percent.append(data_123['jvm']['mem']['heap_used_percent'])
os_mem_coodinate_151_used_percent.append(coodinate_151['os']['mem']['used_percent'])
os_cpu_coodinate_151_percent.append(coodinate_151['os']['cpu']['percent'])
jvm_mem_coodinate_151_heap_used_percent.append(coodinate_151['jvm']['mem']['heap_used_percent'])
os_mem_data_125_used_percent.append(data_125['os']['mem']['used_percent'])
os_cpu_data_125_percent.append(data_125['os']['cpu']['percent'])
jvm_mem_data_125_heap_used_percent.append(data_125['jvm']['mem']['heap_used_percent'])
except KeyError:
break
xdata = range(len(os_mem_coodinate_95_used_percent))
#--------------------------------------------
ydata1 = os_mem_master_111_used_percent
fig = plt.figure(figsize=(15, 10))
fig.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.35)
ax = fig.add_subplot(3, 3, 1)
ax.plot(xdata, ydata1, color='tab:blue')
ax.set_ylabel(Y_LABEL)
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE -1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS memory used rate - master')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 2)
# create some y data points
ydata1 = jvm_mem_master_111_heap_used_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.set_xlabel(X_LABEL)
# set the limits
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('Heap memory used rate - master')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 3)
ydata1 = os_cpu_master_111_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS cpu used rate - master')
#--------------------------------------------
#--------------------------------------------
ydata1 = os_mem_data_106_used_percent
ydata2 = os_mem_data_123_used_percent
ydata3 = os_mem_data_125_used_percent
# fig = plt.figure(figsize=(10, 15))
ax = fig.add_subplot(3, 3, 4)
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:orange')
ax.plot(xdata, ydata3, color='tab:red')
ax.set_ylabel(Y_LABEL)
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE -1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS memory used rate - data')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 5)
ydata1 = jvm_mem_data_106_heap_used_percent
ydata2 = jvm_mem_data_123_heap_used_percent
ydata3 = jvm_mem_data_125_heap_used_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:orange')
ax.plot(xdata, ydata3, color='tab:red')
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('Heap memory used rate - data')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 6)
ydata1 = os_cpu_data_106_percent
ydata2 = os_cpu_data_123_percent
ydata3 = os_cpu_data_125_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:orange')
ax.plot(xdata, ydata3, color='tab:red')
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS cpu used rate - data')
#--------------------------------------------
#--------------------------------------------
#--------------------------------------------
# create some y data points
ydata1 = os_mem_coodinate_95_used_percent
ydata2 = os_mem_coodinate_22151_used_percent
ydata3 = os_mem_coodinate_105_used_percent
ydata4 = os_mem_coodinate_121_used_percent
ydata5 = os_mem_coodinate_120_used_percent
ydata6 = os_mem_coodinate_112_used_percent
ydata7 = os_mem_coodinate_151_used_percent
# fig = plt.figure(figsize=(10, 15))
ax = fig.add_subplot(3, 3, 7)
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:gray')
ax.plot(xdata, ydata3, color='tab:red')
ax.plot(xdata, ydata4, color='tab:cyan')
ax.plot(xdata, ydata5, color='tab:green')
ax.plot(xdata, ydata6, color='tab:orange')
ax.plot(xdata, ydata7, color='tab:purple')
ax.set_ylabel(Y_LABEL)
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE -1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS memory used rate - coordi')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 8)
# create some y data points
ydata1 = jvm_mem_coodinate_95_heap_used_percent
ydata2 = jvm_mem_coodinate_22151_heap_used_percent
ydata3 = jvm_mem_coodinate_105_heap_used_percent
ydata4 = jvm_mem_coodinate_121_heap_used_percent
ydata5 = jvm_mem_coodinate_120_heap_used_percent
ydata6 = jvm_mem_coodinate_112_heap_used_percent
ydata7 = jvm_mem_coodinate_151_heap_used_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:gray')
ax.plot(xdata, ydata3, color='tab:red')
ax.plot(xdata, ydata4, color='tab:cyan')
ax.plot(xdata, ydata5, color='tab:green')
ax.plot(xdata, ydata6, color='tab:orange')
ax.plot(xdata, ydata7, color='tab:purple')
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('Heap memory used rate - coordi')
#--------------------------------------------
ax = fig.add_subplot(3, 3, 9)
# create some y data points
ydata1 = os_cpu_coodinate_95_percent
ydata2 = os_cpu_coodinate_22151_percent
ydata3 = os_cpu_coodinate_105_percent
ydata4 = os_cpu_coodinate_121_percent
ydata5 = os_cpu_coodinate_120_percent
ydata6 = os_cpu_coodinate_112_percent
ydata7 = os_cpu_coodinate_151_percent
ax.plot(xdata, ydata1, color='tab:blue')
ax.plot(xdata, ydata2, color='tab:gray')
ax.plot(xdata, ydata3, color='tab:red')
ax.plot(xdata, ydata4, color='tab:cyan')
ax.plot(xdata, ydata5, color='tab:green')
ax.plot(xdata, ydata6, color='tab:orange')
ax.plot(xdata, ydata7, color='tab:purple')
ax.set_xlabel(X_LABEL)
ax.set_xlim([0, RANGE-1])
ax.set_ylim([0, Y_LIMIT])
ax.set_title('OS cpu used rate - coordi')
#--------------------------------------------
#--------------------------------------------
# display the plot
plt.show()
print("------------------------------ end ------------------------------")
#!/bin/bash
cnt=0
while (("${cnt}" < 60)); do
echo "${cnt}"
nohup sh run.sh 2>&1 >braze_log/braze_"${cnt}"_$(date +%Y)-$(date +%m)-$(date +%d)_$(date +%H):$(date +%M):$(date +%S).txt &
((cnt = "${cnt}" + 1))
sleep 1
done
echo "END"
#!/bin/bash
cnt=0
while (("${cnt}" < 800)); do
echo "${cnt} data now : $(date +%Y)-$(date +%m)-$(date +%d) $(date +%H):$(date +%M):$(date +%S)"
curl -X GET "localhost:9200/hyper-item/_search?pretty" -u elastic:elastic1! -H 'Content-Type: application/json' -d'
{
"from": 0,
"size": 20,
"timeout": "60s",
"query": {
"bool": {
"filter": [
{
"range": {
"saleStartDt": {
"from": null,
"to": "now/m",
"include_lower": true,
"include_upper": true,
"boost": 1
}
}
},
{
"range": {
"saleEndDt": {
"from": "now/m",
"to": null,
"include_lower": true,
"include_upper": true,
"boost": 1
}
}
},
{
"term": {
"docDispYn": {
"value": "Y",
"boost": 1
}
}
},
{
"bool": {
"should": [
{
"terms": {
"itemStoreInfo.storeId": [
"37",
"20163"
],
"boost": 1
}
},
{
"term": {
"shipMethod": {
"value": "TD_DLV",
"boost": 1
}
}
},
{
"term": {
"storeType": {
"value": "DS",
"boost": 1
}
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
{
"term": {
"category.lcateCd": {
"value": 100008,
"boost": 1
}
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"sort": [
{
"adultSort": {
"order": "asc"
}
},
{
"itemStoreInfo.weight": {
"order": "desc"
}
},
{
"itemStoreInfo.buyerCnt": {
"order": "desc"
}
},
{
"itemNo": {
"order": "desc"
}
}
]
}
'
((cnt = "${cnt}" + 1))
done
반응형
'ElasticStack > Elasticsearch' 카테고리의 다른 글
[es] NGram Test (0) | 2022.12.11 |
---|---|
[es] filter script (0) | 2022.11.30 |
[es] health check (0) | 2022.11.16 |
[es] Terms Query (0) | 2022.09.27 |
[es] ESSingleNodeTestCase (0) | 2022.08.14 |
Comments