일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- aggregation
- 900gle
- springboot
- License
- plugin
- ELASTIC
- docker
- high level client
- flask
- TensorFlow
- Mac
- Java
- Kafka
- zip 파일 암호화
- API
- sort
- matplotlib
- 차트
- zip 암호화
- license delete
- Elasticsearch
- MySQL
- query
- licence delete curl
- token filter test
- analyzer test
- 파이썬
- Test
- aggs
- Python
Archives
- Today
- Total
개발잡부
파일 읽어서 초당 200개 트래픽 본문
반응형
import asyncio
import aiohttp
import time
from urllib import parse
import urllib3
import matplotlib.pyplot as plt
import numpy as np
from time import sleep
from datetime import datetime, timedelta
from elasticsearch import Elasticsearch
import ssl
import os
#API cache 사용과 응답속도 확인
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
async def fetch(session, url):
try:
async with session.get(url, ssl=False, timeout=aiohttp.ClientTimeout(total=600)) as response:
return await response.text()
except aiohttp.ClientConnectorError as e:
print(f"Connection Error: {e}")
except asyncio.TimeoutError:
print("Request timed out")
async def fetch_all(urls):
async with aiohttp.ClientSession() as session:
tasks = []
for url in urls:
tasks.append(fetch(session, url))
return await asyncio.gather(*tasks, return_exceptions=True)
async def main():
# url = "https://totalsearch-api-qa.homeplus.kr" # 호출하려는 API URL
# url = "http://localhost:8090" # localhost
urls = []
time_a = []
arr_node1 = []
arr_node2 = []
arr_node3 = []
arr_node4 = []
arr_node5 = []
arr_node6 = []
arr_req1 = []
arr_req2 = []
arr_req3 = []
arr_req4 = []
arr_req5 = []
arr_req6 = []
with open(CSV_FILE) as data_file:
count_i = 0
for line in data_file:
keyword = parse.quote(line.strip())
urls.append(HOST + "/home/1.0/total/search?sort=RANK&inputKeyword=" + keyword + "&searchKeyword=" + keyword + "&page=1&perPage=20")
if (len(urls) % CHUNK == 0):
start_time = time.time()
results = await fetch_all(urls)
end_time = time.time()
time_a.append((time.time() - start_time ) * 1000)
node1, node2, node3, node4, node5, node6,req1, req2, req3, req4, req5, req6 = query_cache_monitoring()
arr_node1.append(node1)
arr_node2.append(node2)
arr_node3.append(node3)
arr_node4.append(node4)
arr_node5.append(node5)
arr_node6.append(node6)
arr_req1.append(req1)
arr_req2.append(req2)
arr_req3.append(req3)
arr_req4.append(req4)
arr_req5.append(req5)
arr_req6.append(req6)
dt_object = datetime.fromtimestamp(end_time)
print("Shot!!! ::: " + str(count_i) + " ::: "+str(dt_object.isoformat()))
count_i +=CHUNK
urls = []
t = range(0, len(time_a))
plt.rcParams['font.family'] = 'AppleGothic'
fs = 1
y = time_a
# Plot the raw time series
axs = plt.figure(figsize=(12,6) , layout='constrained').subplot_mosaic([
['time', 'time', 'time'],
['node1', 'node2', 'node3'],
['node4', 'node5', 'node6'],
])
axs['time'].plot(t, y, lw=lw)
axs['time'].set_xlabel(str(len(time_a)) + '회')
axs['time'].set_ylabel('Time(ms)')
axs['node1'].plot(t, arr_node1, 'g', lw=lw)
axs['node1'].plot(t, arr_req1, 'r', lw=lw)
# axs['node1'].psd(arr_node1, NFFT=len(t), pad_to=len(t), Fs=fs)
axs['node1'].set_ylabel('Cache')
axs['node2'].plot(t, arr_node2, 'g', lw=lw)
axs['node2'].plot(t, arr_req2, 'r', lw=lw)
# axs['node2'].psd(arr_node2, NFFT=len(t), pad_to=len(t), Fs=fs)
axs['node2'].set_ylabel('')
# Plot the PSD with different amounts of overlap between blocks
axs['node3'].plot(t, arr_node3, 'g', lw=lw)
axs['node3'].plot(t, arr_req3, 'r', lw=lw)
# axs['node3'].psd(arr_node3, NFFT=len(t) // 2, pad_to=len(t), noverlap=0, Fs=fs)
axs['node3'].set_ylabel('')
# Plot the PSD with different amounts of overlap between blocks
axs['node4'].plot(t, arr_node4, 'g', lw=lw)
axs['node4'].plot(t, arr_req4, 'r', lw=lw)
axs['node4'].set_ylabel('')
# Plot the PSD with different amounts of overlap between blocks
axs['node5'].plot(t, arr_node5, 'g', lw=lw)
axs['node5'].plot(t, arr_req5, 'r', lw=lw)
axs['node5'].set_ylabel('')
# Plot the PSD with different amounts of overlap between blocks
axs['node6'].plot(t, arr_node6, 'g', lw=lw)
axs['node6'].plot(t, arr_req6, 'r', lw=lw)
axs['node6'].set_ylabel('')
axs['node3'].set_title('node3')
for title, ax in axs.items():
if title == 'time':
continue
ax.set_title(title)
ax.sharex(axs['node1'])
ax.sharey(axs['node1'])
# print(f"Time taken: {end_time - start_time} seconds")
# print(f"Number of responses: {len(results)}")
def query_cache_monitoring():
data = client.nodes.stats()
node1 = data["nodes"]["vGT_Ao0pQoa5fXxCiD9vPQ"]["indices"]
node2 = data["nodes"]["2b7CiYd8RFCtgA5P3LurIQ"]["indices"]
node3 = data["nodes"]["T_0Pwn-1STOpEQCThXNmKw"]["indices"]
node4 = data["nodes"]["TFAxWZkSTKSvgUTZbSFjyw"]["indices"]
node5 = data["nodes"]["nCuC5PIUTEOqOu5kMzgo0w"]["indices"]
node6 = data["nodes"]["pWrpoOBsSqO5Nar4sZQnCQ"]["indices"]
return node1["query_cache"]["memory_size_in_bytes"] / div, node2["query_cache"]["memory_size_in_bytes"] / div, \
node3["query_cache"]["memory_size_in_bytes"] / div, node4["query_cache"]["memory_size_in_bytes"] / div, node5["query_cache"]["memory_size_in_bytes"] / div, node6["query_cache"]["memory_size_in_bytes"] / div, node1["request_cache"]["memory_size_in_bytes"] / div, node2["request_cache"]["memory_size_in_bytes"] / div, \
node3["request_cache"]["memory_size_in_bytes"] / div, node4["request_cache"]["memory_size_in_bytes"] / div, node5["request_cache"]["memory_size_in_bytes"] / div, node6["request_cache"]["memory_size_in_bytes"] / div
if __name__ == "__main__":
client = Elasticsearch("https://elastic:elastic1!@totalsearch-es-qa.homeplus.kr:443/", ca_certs=False,
verify_certs=False)
client.indices.clear_cache()
div = 1000000
lw = 0.7
y = []
plt.rcParams['font.family'] = 'AppleGothic'
now = datetime.now()
start_time_view = now.strftime("%Y-%m-%d %H:%M:%S")
CHUNK = 300
HOST = "http://localhost:8090" # localhost
directory_path = 'event'
file_names = os.listdir(directory_path)
for file_name in file_names:
print(file_name)
CSV_FILE = directory_path+"/"+file_name
asyncio.run(main())
now = datetime.now()
end_time_view = now.strftime("%Y-%m-%d %H:%M:%S")
print("Run time :: " + start_time_view + " ~ " + end_time_view)
plt.show()
반응형
Comments