일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- high level client
- API
- Mac
- matplotlib
- query
- ELASTIC
- Java
- TensorFlow
- zip 파일 암호화
- flask
- analyzer test
- springboot
- Elasticsearch
- MySQL
- 파이썬
- docker
- license delete
- aggregation
- token filter test
- Python
- sort
- licence delete curl
- plugin
- aggs
- 900gle
- License
- zip 암호화
- Test
- 차트
- Kafka
Archives
- Today
- Total
개발잡부
[matplotlib] 재현율 개선 쿼리와 일반쿼리 응답시간 비교 본문
반응형
# -*- coding: utf-8 -*-
import time
import json
import requests
import ssl
import urllib3
from ssl import create_default_context
import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
import numpy as np
from time import sleep
plt.rcParams['font.family'] = 'AppleGothic'
print(ssl.OPENSSL_VERSION)
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def csv_data():
count = 1;
progress = 0;
api_data = []
jg_data = []
print("Start.")
with open(CSV_FILE) as data_file:
for line in data_file:
line = line.strip()
time.sleep(0.5)
url_jg = "https://totalsearch.kr/search?sort=RANK&inputKeyword=" + line + "&searchKeyword=" + line + "&page=1&perPage=20"
search_start = time.time()
response_jg = requests.get(url_jg, verify=False)
search_time = time.time() - search_start
jg_data.append(round(search_time * 1000, 2))
url_api = "https://totalsearch.kr/search?sort=RANK&inputKeyword=" + line + "&searchKeyword=" + line + "&page=1&perPage=20&recall=Y"
api_start = time.time()
response_api = requests.get(url_api, verify=False)
api_time = time.time() - api_start
api_data.append(round(api_time * 1000, 2))
print(line)
print("== Recall api 실행시간 ==")
for atimes in api_data:
print(str(atimes) + " ms.")
print("== Normal api 실행시간 ==")
for jtimes in jg_data:
print(str(jtimes) + " ms.")
# 평균 구하기
average_api = np.mean(api_data)
average_jg = np.mean(jg_data)
# print("전체쿼리 횟수: {} 회".format(len(keywords)))
print("Recall api 평균응답시간: {} ms.".format(round(average_api, 2)))
print("Normal 평균응답시간: {} ms.".format(round(average_jg, 2)))
apix = range(len(api_data))
jgx = range(len(jg_data))
# as-is, to-be 성능차이 계산
print("응답시간 증가 : {}%.".format(round(((average_api / average_jg) - 1) * 100, 2)))
# plot the data
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(apix, api_data, color='tab:blue')
ax.plot(apix, jg_data, color='tab:red')
ax.set_ylabel('응답시간(ms)')
ax.set_xlabel('조회수(회)')
# create the events marking the x data points
xevents1 = EventCollection(apix, color='tab:blue', linelength=0.05)
xevents2 = EventCollection(apix, color='tab:red', linelength=0.05)
# create the events marking the y data points
yevents1 = EventCollection(api_data, color='tab:blue', linelength=0.05,
orientation='vertical')
yevents2 = EventCollection(jg_data, color='tab:red', linelength=0.05,
orientation='vertical')
# add the events to the axis
ax.add_collection(xevents1)
ax.add_collection(xevents2)
ax.add_collection(yevents1)
ax.add_collection(yevents2)
# set the limits
ax.set_xlim([1, len(apix)])
ax.set_ylim([0, 500])
ax.set_title('Recall API[BLUE] / Normal[RED]')
# display the plot
plt.show()
##### MAIN SCRIPT #####
if __name__ == '__main__':
CSV_FILE = "./data/recall_b.csv"
# CSV_FILE = "./data/recall_y.csv"
csv_data()
print("Done.")
재현율 개선 쿼리와 일반쿼리 응답시간 비교
# -*- coding: utf-8 -*-
import time
import json
import requests
import ssl
import urllib3
from ssl import create_default_context
import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
import numpy as np
from time import sleep
plt.rcParams['font.family'] = 'AppleGothic'
print(ssl.OPENSSL_VERSION)
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def csv_data():
count = 1;
progress = 0;
api_data = []
jg_data = []
print("Start.")
with open(CSV_FILE) as data_file:
for line in data_file:
line = line.strip()
time.sleep(0.5)
url_jg = "https://totalsearch.kr/search?sort=RANK&inputKeyword=" + line + "&searchKeyword=" + line + "&page=1&perPage=20"
search_start = time.time()
response_jg = requests.get(url_jg, verify=False)
search_time = time.time() - search_start
jg_data.append(round(search_time * 1000, 2))
url_api = "https://totalsearch.kr/search?sort=RANK&inputKeyword=" + line + "&searchKeyword=" + line + "&page=1&perPage=20&recall=Y"
api_start = time.time()
response_api = requests.get(url_api, verify=False)
api_time = time.time() - api_start
api_data.append(round(api_time * 1000, 2))
print(line)
print("== Recall api 실행시간 ==")
for atimes in api_data:
print(str(atimes) + " ms.")
print("== Normal api 실행시간 ==")
for jtimes in jg_data:
print(str(jtimes) + " ms.")
# 평균 구하기
average_api = np.mean(api_data)
average_jg = np.mean(jg_data)
# print("전체쿼리 횟수: {} 회".format(len(keywords)))
print("Recall api 평균응답시간: {} ms.".format(round(average_api, 2)))
print("Normal 평균응답시간: {} ms.".format(round(average_jg, 2)))
apix = range(len(api_data))
jgx = range(len(jg_data))
# as-is, to-be 성능차이 계산
print("응답시간 증가 : {}%.".format(round(((average_api / average_jg) - 1) * 100, 2)))
# plot the data
fig, ax = plt.subplots()
ax.set_title('recall VS normal')
line1, = ax.plot(apix, api_data, lw=2, label='recall')
line2, = ax.plot(apix, jg_data, lw=2, label='normal')
leg = ax.legend(fancybox=True, shadow=True)
ax.set_ylabel('query 속도(ms)')
ax.set_xlabel('조회수(회)')
lines = [line1, line2]
lined = {} # Will map legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
lined[legline] = origline
def on_pick(event):
legline = event.artist
origline = lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
legline.set_alpha(1.0 if visible else 0.2)
fig.canvas.draw()
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
##### MAIN SCRIPT #####
if __name__ == '__main__':
# CSV_FILE = "./data/recall_b.csv"
CSV_FILE = "./data/recall_y.csv"
csv_data()
print("Done.")
반응형
'Python > matplotlib' 카테고리의 다른 글
[matplotlib] legend picking chart sample (0) | 2022.08.19 |
---|---|
[matplotlib] two subplot chart sample 1 (0) | 2022.08.19 |
[matplotlib] pie chart sample 1 (0) | 2022.08.19 |
[matplotlib] line chart sample 2 (0) | 2022.08.19 |
[matplotlib] line chart sample 1 (0) | 2022.08.19 |
Comments