일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- API
- Python
- licence delete curl
- 차트
- analyzer test
- Java
- zip 암호화
- TensorFlow
- Kafka
- query
- license delete
- aggs
- plugin
- Test
- token filter test
- zip 파일 암호화
- MySQL
- 900gle
- 파이썬
- License
- sort
- high level client
- matplotlib
- aggregation
- Elasticsearch
- docker
- flask
- springboot
- Mac
- ELASTIC
Archives
- Today
- Total
개발잡부
12.Multi-Classification 실습 본문
반응형
local에서 테스트 할려고 하니까 안되네..
google colab 에서 해야함..
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('Test accuracy:', test_acc)
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
predications = probability_model.predict(test_images)
predications[0]
print(np.argmax(predications[0]))
print(test_labels[0])
반응형
'강좌' 카테고리의 다른 글
[cnn] Residual block (0) | 2022.08.07 |
---|---|
[tf] 11. RNN (0) | 2022.07.31 |
[tf] 3. Convolution Layer (0) | 2022.07.31 |
선형회귀 (0) | 2022.05.30 |
google colab (0) | 2022.03.24 |
Comments