일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- aggregation
- license delete
- Kafka
- analyzer test
- MySQL
- ELASTIC
- springboot
- License
- plugin
- Test
- docker
- TensorFlow
- licence delete curl
- Mac
- 파이썬
- zip 파일 암호화
- 900gle
- zip 암호화
- high level client
- API
- Python
- flask
- aggs
- matplotlib
- Java
- token filter test
- sort
- 차트
- Elasticsearch
- query
Archives
- Today
- Total
개발잡부
[tf] 11. RNN 본문
반응형
!pip install -q -U tensorflow
!pip install -q tensorflow_datasets
import numpy as np
import tensorflow_datasets as tfds
import tensorflow as tf
tfds.disable_progress_bar()
import matplotlib.pyplot as plt
def plot_graphs(history, metric):
plt.plot(history.history[metric])
plt.plot(history.history['val_'+metric], '')
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend([metric, 'val_'+ metric])
dataset, info = tfds.load('imdb_reviews', with_info=True, as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']
for example, label in train_dataset.take(1):
print('text: ', example.numpy() )
print('label: ', label.numpy())
BUFFER_SIZE = 10000
BATCH_SIZE = 64
train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
test_dataset = test_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
for example, label in train_dataset.take(1):
print('texts: ', example.numpy()[:3])
print()
print('labels:', label.numpy()[:3])
VOCAB_SIZE=1000
encoder = tf.keras.layers.experimental.preprocessing.TextVectorization(
max_tokens=VOCAB_SIZE)
encoder.adapt(train_dataset.map(lambda text, label: text))
vocab = np.array(encoder.get_vocabulary())
vocab[:20]
encoded_example = encoder(example)[:3].numpy()
encoded_example
tf.keras.layers.LSTM(units, activation='tanh', recurrent_activation='sigmoid',
use_bias=True, kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros', unit_forget_bias=True,
kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, return_sequences=False,
return_state=False, go_backwards=False, stateful=False,
time_major=False, unroll=False, **kwargs)
model = tf.keras.Sequential([
encoder,
tf.keras.layers.Embedding(
input_dim=len(encoder.get_vocabulary()),
output_dim=64,
mask_zero=True),
#tf.keras.layers.LSTM(64),
tf.keras.layers.Bidirectional(tf.keras.layers.RNN(tf.keras.layers.LSTMCell(64))),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)
])
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(1e-4),
metrics=['accuracy'])
history = model.fit(train_dataset, epochs=10, validation_data=test_dataset, validation_steps=30)
test_loss, test_acc = model.evaluate(test_dataset)
plt.figure(figsize=(16,8))
plt.subplot(1,2,1)
plot_graphs(history, 'accuracy')
plt.ylim(None,1)
plt.subplot(1,2,2)
plot_graphs(history, 'loss')
plt.ylim(0,None)
반응형
'강좌' 카테고리의 다른 글
[cnn] Residual block (0) | 2022.08.07 |
---|---|
[tf] 3. Convolution Layer (0) | 2022.07.31 |
선형회귀 (0) | 2022.05.30 |
12.Multi-Classification 실습 (0) | 2022.05.14 |
google colab (0) | 2022.03.24 |
Comments