일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- matplotlib
- Python
- API
- flask
- query
- license delete
- high level client
- zip 파일 암호화
- licence delete curl
- ELASTIC
- Kafka
- docker
- plugin
- springboot
- MySQL
- 차트
- sort
- Java
- analyzer test
- License
- 파이썬
- TensorFlow
- Test
- 900gle
- zip 암호화
- Mac
- aggregation
- Elasticsearch
- token filter test
- aggs
Archives
- Today
- Total
개발잡부
[cnn] Residual block 본문
반응형
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
#32x32x3
#Norma
train_images, test_images = train_images/255.0, test_images/255.0
class_names = ['airplane','automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,10))
for i in range(25) :
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
def add_residual_block(inputs, block_number, in_channels, out_channels):
_=str(block_number)
skip = tf.identity(inputs)
down = 1
if in_channels != out_channels:
skip = tf.keras.layers.Conv2D(filters=out_channels,
kernel_size=1,
strides=(2,2),
padding="same")(skip)
down = 2
x = tf.keras.layers.Conv2D(filters=out_channels,
kernel_size=3,
padding="same",
strides=down)(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.nn.relu(x)
x = tf.keras.layers.Conv2D(filters=out_channels,
kernel_size=3,
padding="same"
)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Add()([x, skip])
x = tf.nn.relu(x)
return x
inputs = tf.keras.Input(shape=(32,32,3))
data = tf.keras.layers.Conv2D(filters=64,
kernel_size=7,
strides=2,
padding="same")(inputs)
data = tf.keras.layers.BatchNormalization()(data)
data = tf.keras.layers.Activation('relu')(data)
data = tf.keras.layers.MaxPooling2D(pool_size=(3,3), padding="same", strides=2)(data)
data = add_residual_block(inputs=data, block_number='2_1', in_channels=64, out_channels=64)
data = add_residual_block(inputs=data, block_number='2_2', in_channels=64, out_channels=64)
data = add_residual_block(inputs=data, block_number='3_1', in_channels=64, out_channels=128)
data = add_residual_block(inputs=data, block_number='3_2', in_channels=128, out_channels=128)
data = add_residual_block(inputs=data, block_number='4_1', in_channels=128, out_channels=256)
data = add_residual_block(inputs=data, block_number='4_2', in_channels=256, out_channels=256)
data = add_residual_block(inputs=data, block_number='5_1', in_channels=256, out_channels=512)
data = add_residual_block(inputs=data, block_number='5_2', in_channels=512, out_channels=512)
data = tf.keras.layers.GlobalAveragePooling2D()(data)
data = tf.keras.layers.Dense(10)(data)
model = tf.keras.Model(inputs=inputs, outputs=data)
model.summary()
반응형
'강좌' 카테고리의 다른 글
[tf] 11. RNN (0) | 2022.07.31 |
---|---|
[tf] 3. Convolution Layer (0) | 2022.07.31 |
선형회귀 (0) | 2022.05.30 |
12.Multi-Classification 실습 (0) | 2022.05.14 |
google colab (0) | 2022.03.24 |
Comments